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Abstract-In this paper, we investigate the adaptive bourmmdrol problem of uncertain robotic manipulator.
Smooth saturation function and smooth projectiorrafor are combined in the control design to pretea
input violation and to estimate the uncertain paters. Then, adaptive control with predeterminednbis is
design by the Lyapunov's direct method. In theltethe designed control will never reach the inpaturations
and the tracking error converges to the origin. Sation results are provided to illustrate the efifeeness of the
proposed approaches.

Index Terms-Robotic Manipulator, Adaptive Control, Uncertain r®aeter, Input Saturation, Trajectory

Tracking.
account, the considered problem becomes more
1. INTRODUCTION challenging. The reason is that we not only need to
Constraints appear in the most mechanical systerhandle the uncertainties, but also simultaneousbi d
in real-life. Violation of constraints during op&icn  with constraints.
may result undesired oscillation or system damage. Motivated by the above consideration, in this
Especially, for the robotic systems, the dynamicpaper we propose the control schema based on the
depend on a number of parameters which are unknownmputation of the control inputs with predetermine
to the system researcher. Handling of both com¢rai bounds. The smooth projection operator is used to
and uncertain parameters of robots is a challengirgpsure that the estimated parameters are always
task and has attracted much attention from reseeschbelong to a known set. Smooth saturation functiuh a
for their potential applications in practice. smooth projection operator are combined in the
From the above problem, we firstly need to handleontrol design to prevent the input violation armd t
the uncertainties of the robots. To design therobim  estimate the uncertain parameters. This combination
such cases, the adaptive control approach candae usallows us to design the adaptive control with
The formers [1] shown that the dynamics of roboti@redetermined bounds based on the Lyapunov's direct
manipulator can be parameterized by thenethod. Furthermore, this combination still has
multiplication of a regressor matrix to an uncertai effectiveness in the computation the predetermined
parameter vector. Based on this property, severabunds. Our design ensures that inputs will never
adaptive control laws have been developed such thdolate the saturations while the tracking error
adaptive inverse dynamics control [2], adaptivesymptotically converges to the origin.
passivity-based control [3] and intermediate betwee The rest of the paper is organized as follows. In
the two approaches [4,5]. Section 2, the control problem of the uncertainotab
However, the situation will be changed whermanipulator with the input saturations is formuthte
constraints are taken into account. The reasohais t Section 3 presents the control design. Simulation
the constraints may destroy the stability of theteyn results are provided to illustrate the effectivene$
even when the free control ensures the stabilitthef the proposed controls in Section 4. The paper
robot. In particular, when the constraints have theoncludes in Section 5.
form of input saturation, a combination of the Notation: Throughout this papeR™ denotes the
Lyapunov's direct method and saturation function is Euclidean space withn —dimension. || -|lis the
good choice to prevent the constrain violationtie t Euclidean norm of vectar A,;,(")(Anax())is the
control design. The excellent work used the nestadinimum (maximum) eigenvalue of the matrixFor
saturation function to deal with the multipleinteger indices iand j, o; = [0}1, 02, ", 0] €
integrators with bounded controls firstly was pre@d R"denotes the saturation function vector with
in [6]. Based on this word, several bounded colgrsl elements 0;j,j =1,+,n. A€ R™"denotes the x
have been developed to deal with input saturafiéhs , —matrix. Let two vectors y € R, thenx < y (x <
Later, the problem is solved with the use of the, genotes that; < y; (x; < y;)
smooth saturation function [8]. However, when both
constraints and uncertain parameters are taken into
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2. PROBLEM FORMULATION

In this paper, we study the robotic manipulato

described by the following equations [13]:
D(@)§+ClqPg+G(q =u 1)

lw;| <u;, i=1,,n 2
whergg € R" is the generalized coordinatase R™
is the vector of control inputs satisfying consitdtq.
2m; >0,i=1,---,n is the positive number;
D € R™™ is the inertia matrix functionf € R™" is
the Coriolis and centrifugal forces matrix afice R™
is the gravity force.

Definition 1Given a positive constant &, a function
E R — R is said to be a smooth saturation function
with the bound &, if it is smooth and satisfies (i)
¢a(¢) >0,vg=0; (i) |loa()|<aVvVe¢ceR; (i)
o(—¢) = —a(5), V¢ ER; (iv) V¢>0,3k >0 such
that | (ks)| = 22 (g1, ¥ [¢] <¢.

The above definition is similar to the definitiom i
[9]. The additional properties (iv) is necessary dar
design later. Some functions satisfying the Definit

1 include a(¢) = otanh(s),0(¢) = a¢/{/1+¢% or

The robotic manipulator Eq.(1) has the followingo (¢) = Garctan(s).

properties.

Property 1 ([9]) There exist some positive
constantsd,,, dy, k. and k, such that the following
properties hold for all ¢,z € R™:

PL dp, < ID(Il < dy-

P2. [|C(q, 2|l < kcllz|l.

P3. Matrix D(q) — 2C(q,q) is skew-symmetric, i.e.,
q"(D(q) - 2C(q,9))q = 0.

SUP, G (@I < kg

The left-hand side of the Eq.(1) can be rewritten
as

D(q)j+C(q,q)g +G(q) =Y(q,4,§)6 = u(3)
whereY (g, 4, §) € R™? isthe regressor matrix of
known functions, and 8 € RP is a vector of
parameters.

P4.
P5.

To solve the tracking control problem, we define
the tracking errors as
e=q—qq r==¢6+Ae (4)
where\ € R™*" is a positive diagonal matrix. Taking
the time derivative of Eq.(4) along Eq.(1), yields

D(q)r = —C(q,r +u—D(q)({q — Aé)

—C(4,4)(qa — Ae) = G(q). ()

(6)

Denoting
w = (qg — Ae

and using the item P5 of Property 1, we have

Yo(q,q,@)0 = —D(q)w — C(q, Q)= — G(q), (7)
whered € R? contains the unknown constant
parameters andY;(q,q,@w) € R™*P contains the
known functions. The equation (5) is rewritten as

D(q)7 = —C(q, Pr + u(v) + Y;0. 8

Add and subtract the right-hand side of Eq. (8) by

The problem considered in this paper can be stated (; 4. .00 = —D(q)d, — €(q, 4.)da — G(q), (9)

as:

Problem 1Consider the system described by Eq.(1)
and Eq.(2). Let g4(t) € R® be a given sufficiently
smooth desired trajectory with its time-derivatives
bounded. Suppose that the matrices D(q), C(q,q") and
G(q) are unknown. Design the control u for (1) such
that

1) The constraint Eq.(2) is satisfied.

2) All the closed-loop signals are bounded.

3) The tracking error |[|q(t) — qq)llconverges a
neighborhood of the origin which can be made
arbitrarily small.

The main difficulty of the above problem is to hind

simultaneously the constraint Eg.(2) and
uncertainties ofD(q),C(q,q) and G(q). The similar

problem has been considered [10,11]. Here, a difter

control shall be designed to solve the problem 1.

3. CONTROL DESIGN

This section presents the computation of the

where;(q, 44, G4) has the same form witti(q, g, §)
in Eq.(3) instead that and ¢ are replaced byj, and
44, respectively,thenEq.(8) becomes
D(q)r = —C(q,Qr + Y0 +
y(q' q' da, qd) tu (10)

y() = D(q)(ga — Aé) — D(9)Ga
+C(q,9)(qa — Ae) — C(q,4a)qa (11)
The goal now is to design the control u satisfying
Eq.(2) for EQ.(10) to achieve —» 0ast — . To this
end, we need the following assumption.

where

Assumption 1 Uncertain parameter 6 belongsto a set
M ={6eRP|§ <6 <0}(12)
whered, 6 € R? are two known vectors satisfying

the i

0<0.

Based on Assumption 1, we propose the control
as

u=—0o,(Ae) — 0,(r) — Y 0 (13)
and the update law as
0 = Projz(r), t=TY,r,0(00eM  (14)

adaptive controlu for EqQ.(1) with predetermined wheres;, o, € R" are the smooth vector saturation
bound Eq.(2). For this purpose, we need the foltgwi functions,d is an estimation off; Projs(-) denotes the

concept of saturation function.

smooth projection operator from [13], which is
defined as
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Projg =
( T ifP(d) <o
R if () = 0 andV,yPt < 015)
T ?(e)vfg?vzé? ifnot
U vl

hereP is a smooth convex function definedjfi and
we use denotatioVizP? = 9P /d8.

The smooth projection operator Eq.(15)
employed to guarantee théte M for all t > 0if

Then, for all (e(0),7(0)) € 25,andd(0) € M,
the tracking error converges asymptotically to the
origin, i.e.,

lim;, |le(®), r(®)]| = 0.(25)

Proof: 1. DenotingF = Y,8, from Eq.(13) we have
[u;l < 01;(Aje;) + 0z:(ry) + il (26)
wheref;is the element of. Using Eq.(9) the ternf;

issatisfies

Ifil < duT; + kcuM; + g;.

6(0) e M. The bounded control Eq.(13) only From Eq.(20), there exist the boungls anda,; such

achieves the local stability of the system Eq.(Fdr
this reason, we will construct region of attraction
EQ.(10). To do this, let two strict positive vecor
A € R" andB € R" and define the set

Q, ={(e,7) € R*||e| < A4,|r| < B}.
We consider the candidate Lyapunov function

n
1 re
)= Z—f a1 (Asp)ds; +
i=1 AiJo

+%rTD(q) + %5”“{1517)
wherer,;, A; ande; are the elements af,, A ande,
respectively, andl = 6 — fis the estimation error of
uncertain parameters,;; € R™" is a positive
definitive matrix. Furthermore, we need the follogi
denotations

(16)

- |oi(Aay)
ks = min |————
i=1,-,n ai
ke = min;_;.., 02;—(;”)| (18)
daoy;(Ae;)
k; = max ————=
i=1,-n de;

heren; and b;are the elements of vectors and B,
respectively. We have the following theorem.

Theorem 1Consider manipulator described by
Eq.(1) and Eq.(2) under Assumptions 1, the control u
described by Eq.(13), the update law 8 described by
Eq.(14). Suppose that the derivatives of the reference
trajectory q,(t) are bounded by

|C.Idi| < Mil |qdl| < Ti' i=1--,n (19)
whereM; = 0 and T; > 0 satisfy
dMTi + kcl’lMi + g_i < ﬁi, i = 1,---,n (20)
2kS (kﬁ - AmaX(A)dM - kc#) >
lmax(A)z(Amax(A)dM + ch#)z(zj-)
with u = (X7 M?)z. Then, the following statements
hold
1) Theconstraint Eq.(2) is satisfied.
2) Thereexistsa set 25, depending on § as
05, ={(e,r) € 2,|¢ Vi (e,7,6) < 0(22)
withp and ¢ defined as
_ 4k5 (kﬁ - lmax(A)dM - kc#)
B Amax(A)?
_Z(AmaX(A)dM + ZkCﬂ)z,(ZS)

37,2 2
{ = max {—8'1””"(/12) k°k7,&}(24)
K2 dm

that
lu;| < 61:(Ase;) + G5i(r) + dy T,
+houM; + g; < |ul(27)
From Eq.(27) we conclude that the constraint EGY2)
satisfied.

2. Substituting Eq.(13) and Eqg.(14) into Eq.(10g t
dynamic equations of the closed-loop tracking error
are given by

D(q)F = —C(q, @I + Va0 — 01 (Ae) — 05(r) + ¥
6 = Projz(I,Yyr). (28)
We shall show thak; is non-positive. Taking time
derivative ofl/; in Eq.(17) along Eq.(28), yields
o
v, = éTo(Ae) + % —17C(q, )r +rTY,0
—rTo (Ae) —1To,(r) + 1Ty — 1716 (29)

Using item P3 of Property 1, we hav&(D(q) —
2C(q,q)r =0 and substitutee from Eq.(4) into
Eq.(29), we obtain

V, = —eTAoy(Ae) —1To,(r) + 1Ty
—8" (I " Projs (I Yur) — Y1) (30)
Using Eq.(15), we haved” (I7Projg (T, Yyr) —
Ydr= 0then, Eq.(30) becomes
V, < —eTAoy(Ae) —rTo,(r) +17y. (31)
The last term in EQ.(31) satisfies the following
inequality
rTy = (Amax(A)dM + kcl'l)”rllz
+max () (Amax (M k|l e]|
+kll7 1+ Amax (D) dag + 2k llelllI7 ], (32)
and the following inequalities hold true for all
(e,r) €Q,

—Amin(Mea; (Ae) < —ks|lel|?

—1To,(r) < —kellr|l?, (33)
whereczand k, are in Eqg.(18). From Eq.(32) and
Eq.(33), we have

Vl = _Clllrlll\2 - sz||e|| + /’lmax(A)(Amax(A)kc”e”

+kellr + callelllirll - (34)
withey = ke = Anax (M) dy — kepts ¢ = ks; 3 =
Amax(N)dy + 2k p. Then, we rewrite

V, < —xTQ(e,m)x (35)
wherex = [||e]|, |Ir]|]]Tand
di1 412
QC) = [CI21 C122] (36)

Withq,1 = ¢1; G2z = €35 Q12 = Ga1 =
~Amax () Amax D kcllell + kclI7 |l + c3)/2.
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Thus,V, () is non-positive if theQ (e, r) is positive
definitive. This can be satisfieddf > 0,c, > 0 and
2 2
€16, > Amax(A)* Amax(Mkcllell+kcllrll+c3) ] (37)

4
Condition ¢, > 0 is satisfied by definingks in

Eq.(18). Conditiorr; > 0 is satisfied by Eq.(21). The

remainder is condition Eq.(37) which can be writssn

4
Gmakellell + kellrll + ¢ < 9% (38)

The upper bound of the left-hand side of EQ.(38) i
Amax(Wkcllell + kcllr]l + ¢5)?
< e W2KZNell? + 4KZITI? +2¢5 (39)

here we use the inequalitfd + b)” < 2a? + 252,
Denoting
Wi (e, 1) = 4dmax (W2 KZ |lell? + 4KZ|I7|I2.  (40)
Clearly, W (e, r) is a positive definitivefunction.Then
Eq.(39) becomes
(AmaX(A)kc”e” + kc”r” + 63)2 < Wl(e: 7”) + 2(2??1)

at www.ijrat.org

{Ws3(e, 7, Omax) < 0 = (Wy(e,7) < 0. (54)
Furthermore(, is a subset 6f;, since
{Wole,r) <o = Wiler) <o (55)
Thus, we have
Q5o C Qg € Q3. (56)

The nested sets in Eq.(56) show that for any
(e,7.0) € Q5,x M, conditon Eq.(37) holds,
implying that V,(e,7,8) <0, then the solution
starting at(e(0),7(0)) € Q, stays inQg, for all
6 € M andt = 0, and consequently ift, as well as
in Q.

V\?e proceed to show that the solutiGe(t), r(t))
converges asymptotically to the origin. Since, doy
6(0)and (e, 1) € Qo the matrix Q is positive
' definitive and

Vi(e,7,8) < —xTQx, V (e,1) € 0, (57)
From Eq.(57), this shows thé&,r) € L, n L, and

S

From Eq.(38), Eq.(40) and Eq.(41), the conditio € L. and we conclude from Eg.(13)thate€ L.

Eq.(37) is rewritten as

4
wi(e,r) < Am::(c/f)z —2c% =o. (42)
where is in EQ.(23). Let us define the set
Q3 ={(e,1) € Q|Wi(e,7) < 0}, (43)

then, condition Eq.(37) is ensured(#(t), r(t)) stays

This implies, using Eq.(1) and Property 1, tlja€
L, and hence from Eq.(10) and Eq.(4), that) €

Ly,. Since, (¢,7) €L, and (e,r) is uniformly
continuous. Therefore, using Barbalat's Lemma [14]
we conclude that(e,r) > 0 ast —» o and hence
(e,é&) » Oast - .

in Q5 for all the time. In order to achieve this purpose

we note that

W2 (e,r) < V1 (e; r, é) < W3 (e: T, gmax) (44)
where
_ lloiae)||? dmllr]I?
Wale,r) = i ¥ 2 (45)
~ lmax(A)k7 dM
W ] IH = 2 - 2
(e Oma) = 53 Gy lell” + Il
+ Amax(rllnemax” (46)
Opax =0 — 0 > 0. (47)
Furthermore, we have
Wi(e,r) < {W,(e, 7). (48)

wher€ is in Eq.(24). Since, we have,r) € Q,, then

2

llell> < Z?:lﬁ'%i(/\ieiﬂz- (49)
2
Let kg = max;—; .., Uli(i‘iai)zthen
llell* < kglloy(Ae)|I? (50)
Using Eq.(50), we rewrit®/; (e, r) in Eq.(40) as
W,(e,r) < 81, (A)*k2k,k oy (o)1
1\ - max ] c*7m8 Amax(A)k7
8kZ (dm 2
+ 25 (% ). (51)

Let ¢ as Eq.(24), then, we obtain Eq.(48).

Thus, by constructing the sel;, with using
Eq.(44) and Eq.(48), we have the followin
relationship

Wy(e,r) < I Wy(e,m) < {Ws(e, 7, Bay) < 0.(52)
Furthermore, the sé€l; , in (22) is a subset of
0= (e EQEWy(e, ) <o (53)
since

Remark 1The smooth projection operator Eq.(15)
used in this paper ensures that the estimation
parameter 8 always belongs to the domain M even
when the numerical error is appeared. Snce the
numerical error may drive § outside of the domain
M. In this case, the saturation projectionoperator in
[11] isno longer defined.

4. SIMULATION RESULTS

A

i

Fig.1: The Planar Elbow Manipulator with two reviglu
joints.

The simulation is taken from the example of a
Planar Elbow Manipulator [2] with two revolute jéén
shown in Fig. 1. For the link i = 1,2, q_i denotes
the joint angle;m; is the mass|; is the length;l,;

Ydenotes the distance from the previous joint to the
center of mass of link andl; denotes the moment of
inertia about the axis coming out of the page, ipgss
through the centre of mass of link The dynamic
equations of the robot have the form Eq.(1) with
q = [q],qT]" and the matrices
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D(q) = diq dlz] C(q,q) = hg, hg; + hilz] ¢ = 2.4227. Thus all the conditions Eq. (20) and Eq.
dy; dy]l 7NV —hq, 0 (21) are satisfied.

whered,; = ml2, + my( + 1%, + 21,1, cos q,) + For the comparison, we carry out the simulation of

I + 1; dyy = dyy = my(1%, + 111, cos g,) + the proposed controller Eq. (13) and Eq. (14), ted

Iy; dyp = myl%, + I,; h = —m,ll,, sing, and Model Reference Adaptive Control-like (MRAC-like)

G(q) in [5], and the unbounded controller in [15]. Ireth
(myly + myly)g cosqq +myl,g cos(q_1 + q_2)] results, the joint angleg andg, are illustrated in Fig.

- [ myl,,g cos(q_1+ q_2) 2. The angular velocities of two link robot haveebe

The values of the parameters in the simulation agresented in Fig. 3. The contralg andu, have been
given as follows: 0.5kg m; <3kg and 0.5kg m, < shown in Figs. 4. We are able to see that the [megho
2kg, I; =0.5m, I, = 0.25m, I, = 0.5m and [, = adaptive controller does not reach the input stitna
0.25m. Furthermore, we assume that the nominavhile the other two controllers violated. The
values arem,; = 2kg, m, = 1.5kg. The moments of estimations of uncertain parameters of three method

inertia are calculated by formulas= m,1?/12 and were illustrated in Fig. 5. Thus, It was mentiorbdt
I, = m,12/12. Then, we obtaind,, = 0.154, d), = the estimated parameters in three methods do not
1.2444, k, = 0.4333 andk, = [19.62,4.905]. converge to its real values. _In f_;lddmon, _the utzser

If we group the parameters a#; = m,l% + parametgreest!mateg by projection algorithm always
Myz4i2,) + 1+ 1202 = Mylile; 03 = mpll, + belongs in regiond, 6.
I; 0, = myl + myly; 05 = myl,. Then the

uncertain parameter i8 = [6;,0,,03,0,,05]" € R>.
The smooth saturation function used in the simoitati
is a(k¢) = atanh(k¢) where gis the bound of the
function o(:).The detail of the matriX;(q, 44, Gy4) is
given in the following:

Y, = [3’11 YViz V13 Vi 3’15]

a 1y;1 Yoz Yoz Yaa Vs
wherey;; = Gaq, Y12 = €05(q2) RGar + Gaz) —
sing2(qd22+2qg1gd?2), y13=gd2, y14=gcos(g1)

v Yis=9gcos(qrtq2), Y21 =0,  y=
cos(qz){q1 + Sin(‘lz)(h%p Y23 = a1 + Gazs Y2a = 0, : : : : : : :
Y25 = g €0s(q1 + q2). I N T A
The initial conditions areq = [0,0]7rad, ¢ = Fig. 2: Joint ‘””“i‘] d
[0,0]"rad/s. The reference trajectory is given by '9. <. Joint angleg, andq;.

4us(®) = 5 (1~ e *)rag

MRAC-like

= Predetermined Bound
Sadegh-Horowitz |
Reference

a, [rad]

(58)

MRAC-like

Predetermined bound

Sadegh-Horowitz
Reference

T T
MRAC-like

da>2 (t) = g(l - e_O'St)ra.d (59) Predetermined bound |
T Sadegh-Horowitz
The input saturations in (2) are H Rs{eince .
Computation of the controller Eq.(13) and Eq.(14): : ‘ ‘ ‘ : ‘ :
The bounds of uncertain parameter are: o 1 2 3 s 5 6 7 8

6 =[0.2082,0.0625,0.0417 0.3750 0.1250]7,
6 = [1.2500, 0.3750,0.2500,2.2500,0.7500]".

The smooth convex functio®(8) in Eq. (15) is
constructed as

T T
MRAC-like
777 m— Predetermined bound 7
Sadegh-Horowitz
Reference

2 [rad/s|

A2 6;-9; - :
PO =2sL. =Y —1+e] D) -
éi*’ﬁi gi—Qi . timg[s] ° ° ! :
where 19i=7,vi=T,z=1,---,5, and
0<e<1and? > 2 are two real numbers. In the Fig. 3: Angular velocitiesj;andgs.

simulation, we set = 0.2,¢ = 2.
Following Eq. (20) and Eg. (21), we haye= 5. CONCLUSIONS

22357, and select; = [4,1]",0, = [3,3]" for Eq. We have proposed the control schema for the
(13), the matrices\ = diag(0.15,0.15) for Eg. T(4)’ uncertain robotic manipulator in the presence input
I, = diag(0.1,0.1),6(0) = [0.5,0.15,0.1,0.5,0.3] saturations, that is the controller with predetewli

for Eq. (14),A = [3,3]" andB = [2,2]" for Eq. (16). pounds. Our controller is based on computatiorhef t
Then from Eq. (18)ks = 0.3333,k¢ = 1.5,k; = 0.6,

from Eq. (23) o =11.4419 and from Eg. (24)
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