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Abstract-In this paper, we investigate the adaptive bounded control problem of uncertain robotic manipulator. 
Smooth saturation function and smooth projection operator are combined in the control design to prevent the 
input violation and to estimate the uncertain parameters. Then, adaptive control with predetermined bounds is 
design by the Lyapunov's direct method. In the result, the designed control will never reach the input saturations 
and the tracking error converges to the origin. Simulation results are provided to illustrate the effectiveness of the 
proposed approaches. 
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1. INTRODUCTION 

Constraints appear in the most mechanical systems 
in real-life. Violation of constraints during operation 
may result undesired oscillation or system damage. 
Especially, for the robotic systems, the dynamics 
depend on a number of parameters which are unknown 
to the system researcher. Handling of both constraints 
and uncertain parameters of robots is a challenging 
task and has attracted much attention from researchers 
for their potential applications in practice. 

From the above problem, we firstly need to handle 
the uncertainties of the robots. To design the control in 
such cases, the adaptive control approach can be used. 
The formers [1] shown that the dynamics of robotic 
manipulator can be parameterized by the 
multiplication of a regressor matrix to an uncertain 
parameter vector. Based on this property, several 
adaptive control laws have been developed such that 
adaptive inverse dynamics control [2], adaptive 
passivity-based control [3] and intermediate between 
the two approaches [4,5].  

However, the situation will be changed when 
constraints are taken into account. The reason is that 
the constraints may destroy the stability of the system 
even when the free control ensures the stability of the 
robot. In particular, when the constraints have the 
form of input saturation, a combination of the 
Lyapunov's direct method and saturation function is a 
good choice to prevent the constrain violation in the 
control design. The excellent work used the nested 
saturation function to deal with the multiple 
integrators with bounded controls firstly was proposed 
in [6]. Based on this word, several bounded controllers 
have been developed to deal with input saturations [7]. 
Later, the problem is solved with the use of the 
smooth saturation function [8]. However, when both 
constraints and uncertain parameters are taken into 

account, the considered problem becomes more 
challenging. The reason is that we not only need to 
handle the uncertainties, but also simultaneously deal 
with constraints. 

Motivated by the above consideration, in this 
paper we propose the control schema based on the 
computation of the control inputs with predetermined 
bounds. The smooth projection operator is used to 
ensure that the estimated parameters are always 
belong to a known set. Smooth saturation function and 
smooth projection operator are combined in the 
control design to prevent the input violation and to 
estimate the uncertain parameters. This combination 
allows us to design the adaptive control with 
predetermined bounds based on the Lyapunov's direct 
method. Furthermore, this combination still has 
effectiveness in the computation the predetermined 
bounds. Our design ensures that inputs will never 
violate the saturations while the tracking error 
asymptotically converges to the origin. 

The rest of the paper is organized as follows. In 
Section 2, the control problem of the uncertain robotic 
manipulator with the input saturations is formulated. 
Section 3 presents the control design. Simulation 
results are provided to illustrate the effectiveness of 
the proposed controls in Section 4. The paper 
concludes in Section 5. 

Notation: Throughout this paper, ℝ� denotes the 
Euclidean space with � −dimension. ‖ ∙ ‖is the 
Euclidean norm of vector∙. �min(∙)(�max(∙))is the 
minimum (maximum) eigenvalue of the matrix ∙. For 
integer indices �and �, �� = ����, ���, ⋯ , ����� ∈
ℝ�denotes the saturation function vector with 
elements ��� , � = 1, ⋯ , �. � ∈ ℝ�×�denotes the� ×
� −matrix. Let two vectors , ! ∈ ℝ�, then  < ! ( ≤
!) denotes that  � < !�  ( � ≤ !�). 
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2. PROBLEM FORMULATION 

In this paper, we study the robotic manipulator 
described by the following equations [13]: 

%(&)&' + )(&, &* )&* + +(&) = ,            (1) 
|,�| ≤ ,.� , � = 1, ⋯ , �                             (2) 

where& ∈ ℝ� is the generalized coordinates; , ∈ ℝ� 
is the vector of control inputs satisfying constraint Eq. 
(2);,.� > 0, � = 1, ⋯ , � is the positive number; 
% ∈ ℝ�×� is the inertia matrix function; ) ∈ ℝ�×� is 
the Coriolis and centrifugal forces matrix and + ∈ ℝ� 
is the gravity force. 

The robotic manipulator Eq.(1) has the following 
properties. 

Property 1 ([9]) There exist some positive 
constants12, 13 , 45 and 46 such that the following 
properties hold for all &, 7 ∈ ℝ�: 
P1. 12 ≤ ‖%�&�‖ ≤ 13.                   
P2. ‖)�&, 7�‖ ≤ 45‖7‖. 
P3. Matrix %* �&� − 2)�&, &* � is skew-symmetric, i.e., &* �:%�&� − 2)�&, &* �;&*  = 0. 
P4. sup<∈ℝ=‖+�&�‖ ≤  46 

P5. The left-hand side of the Eq.(1) can be rewritten 
as  %�&�&' + )�&, &* �&*  + +�&� = >�&, &* , &' �? = , (3) 
where>�&, &* , &' � ∈ ℝ�×@ is the regressor matrix of 
known functions, and ? ∈ ℝ@ is a vector of 
parameters. 

The problem considered in this paper can be stated 
as: 

Problem 1Consider the system described by Eq.(1) 
and Eq.(2). Let &A�B� ∈ ℝ� be a given sufficiently 
smooth desired trajectory with its time-derivatives 
bounded. Suppose that the matrices %�&�, )�&, & *� and +�&� are unknown. Design the control , for (1) such 
that 

1) The constraint Eq.(2) is satisfied. 
2) All the closed-loop signals are bounded. 
3) The tracking error ‖&�B� − &A�C�‖converges a 

neighborhood of the origin which can be made 
arbitrarily small. 

The main difficulty of the above problem is to handle 
simultaneously the constraint Eq.(2) and the 
uncertainties of %�&�, )�&, &* � and +�&�. The similar 
problem has been considered [10,11]. Here, a different 
control shall be designed to solve the problem 1. 

3. CONTROL DESIGN 

This section presents the computation of the 
adaptive control , for Eq.(1) with predetermined 
bound Eq.(2). For this purpose, we need the following 
concept of saturation function. 

Definition 1Given a positive constant �., a function �: ℝ → ℝ is said to be a smooth saturation function 
with the bound �., if it is smooth and satisfies (i) F��F� > 0, ∀ F ≠ 0; (ii) |��F�| ≤ �., ∀ F ∈ ℝ; (iii) ��−F� = −��F�, ∀F ∈ ℝ; (iv) ∀F̅ > 0, ∃4 > 0 such 

that |��4F�| ≥ M�NO.�O. |F|, ∀ |F| ≤ F.̅ 
The above definition is similar to the definition in 

[9]. The additional properties (iv) is necessary for our 
design later. Some functions satisfying the Definition 

1 include ��F� =  �P tanh�F�, ��F� = �.F/T1 + F� or ��F� = �.arctan�F�. 

To solve the tracking control problem, we define 
the tracking errors as W = & − &A , X = W* + ΛW                    (4) 
whereΛ ∈ ℝ�×� is a positive diagonal matrix. Taking 
the time derivative of Eq.(4) along Eq.(1), yields 

%�&�X* = −)�&, &* �X + , − %�&��&'A − ΛW*�             −)�&, &* ��&*A − ΛW� − +�&�.                 (5) 
Denoting Z = &*A − ΛW                             (6) 
and using the item P5 of Property 1, we have >[�&, &* , Z�? = −%�&�Z* − )�&, &* �Z − +�&�,  (7) 
where? ∈ ℝ@ contains the unknown constant 
parameters and >[�&, &* , Z� ∈ ℝ�×@ contains the 
known functions. The equation (5) is rewritten as    %�&�X* = −)�&, &* �X + ,�\� + >[?.            (8) 
Add and subtract the right-hand side of Eq. (8) by >A�&, &*A , &'A�? = −%�&�&'A − )�&, &*A�&*A − +�&�,  (9) 
where>A�&, &*A , &'A� has the same form with >�&, &* , &' � 
in Eq.(3) instead that &*  and  &'  are replaced by  &*A and 
 &'A, respectively,thenEq.(8) becomes %�&�X* = −)�&, &* �X + >A? + !�&, &* , &A , &*A� + ,     (10) 
where !�⋅� = %�&��&'A − ΛW*� − %�&�&'A +)�&, &* ��&*A − ΛW� − )�&, &*A�&*A          (11) 

The goal now is to design the control u satisfying 
Eq.(2) for Eq.(10) to achieve X → 0as B → ∞. To this 
end, we need the following assumption. 

Assumption 1 Uncertain parameter ? belongs to a set  ℳ = `? ∈ ℝ@a? ≤ ? ≤ ?̅b,(12) 
where?, ?̅ ∈ ℝ@ are two known vectors satisfying ? < ?̅. 

Based on Assumption 1, we propose the control , 
as , = −���ΛW� − ���X� − >A?c               (13) 
and the update law as ?c* = Projgh �i�, i = Γ�>AX, ?c�0� ∈ ℳ       (14) 
where��, �� ∈ ℝ� are the smooth vector saturation 
functions, ?c is an estimation of ?; Projgh �⋅� denotes the 
smooth projection operator from [13], which is 
defined as 
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Projgh =

klm
ln i if p:?c; ≤ 0i if p:?c; ≥ 0 and∇gh pi ≤ 0

i − p:gh;∇shp∇thpu
v∇shpvw i if not

x(15) 

herep is a smooth convex function defined in ℳ and 
we use denotation ∇gh p = yp/y?c. 

The smooth projection operator Eq.(15) is 
employed to guarantee that ?c ∈ ℳ for all B ≥ 0if ?c�0� ∈ ℳ. The bounded control Eq.(13) only 
achieves the local stability of the system Eq.(10). For 
this reason, we will construct region of attraction for 
Eq.(10). To do this, let two strict positive vectors � ∈ ℝ� and z ∈ ℝ� and define the set Ω� = |�W, X� ∈ ℝ��||W| ≤ �, |X| ≤ z}.       (16) 
We consider the candidate Lyapunov function 

~��⋅� = � 1Λ�
�

���
� ����Λ����1��

��
� +                 

+ �� X�%�&� +    �� ?������?�17) 

where���, Λ�  and W� are the elements of ��, Λ and W, 
respectively, and ?� = ? − ?cis the estimation error of 
uncertain parameters, �� ∈ ℝ�×� is a positive 
definitive matrix. Furthermore, we need the following 
denotations 

4� = min���,⋯,� �����Λ������ � 
4� = min���,⋯,� �Mw������� �        (18) 

4� = max���,⋯,�
y����Λ�W��yW�  

here�� and ��are the elements of vectors � and z, 
respectively. We have the following theorem. 

Theorem 1Consider manipulator described by 
Eq.(1) and Eq.(2) under Assumptions 1, the control , 
described by Eq.(13), the update law ?c described by 
Eq.(14). Suppose that the derivatives of the reference 
trajectory &A�B� are bounded by |&*A�| ≤ �� , |&'A�| ≤ �� , � = 1, ⋯ , � (19) 
where�� ≥ 0 and �� ≥ 0 satisfy 13�� + 45��� + �̅� < ,.� , � = 1, ⋯ , �  (20) 24��4� − �max���13 − 45�� > �max����:�max���A� + 245�;�

(21) 

with � = �∑ ����� ��w.  Then, the following statements 
hold 
1) The constraint Eq.(2) is satisfied. 
2) There exists a set �g�,� depending on ?� as �g�,� = |�W, X� ∈ ��|� ~�:W, X, ?�; ≤  (22) 

with  and � defined as 

  = 44��4� − �max���13 − 45���max����  

−2��max���13 + 245���,(23) � = ¢� £¤¥max���¦N§wN¨N©w , ¤N§wAª «(24) 

Then, for all :W�0�, X�0�; ∈ �g�,�and?c�0� ∈ ℳ, 
the tracking error converges asymptotically to the 
origin, i.e., ¬�¢C→ ‖W(B), X(B)‖ = 0. (25) 

Proof: 1. Denoting ® = >A?c, from Eq.(13) we have 
|,�| ≤ ���(Λ�W�) + ���(X�) + | �̄|           (26) 

wherē � is the element of ®. Using Eq.(9) the term ̄� 
satisfies 

| �̄| ≤ 13�� + 45��� + �̅� . 
From Eq.(20), there exist the bounds �.�� and �.�� such 
that 

|,�| ≤ �.��(Λ�W�) + �.��(X�) + 13�� 
+45��� + �̅� ≤ |,.�|.(27) 

From Eq.(27) we conclude that the constraint Eq.(2) is 
satisfied. 

2. Substituting Eq.(13) and Eq.(14) into Eq.(10), the 
dynamic equations of the closed-loop tracking error 
are given by 
     %(&)X* = −)(&, &* )X + >A?� − ��(ΛW) − ��(X) + ! 

?c* = Projgh (Γ�>AX).  (28) 
We shall show that ~*� is non-positive. Taking time 

derivative of ~� in Eq.(17) along Eq.(28), yields 

~*� = W* ���(ΛW) + X�%* (&)X
2 − X�)(&, &* )X + X�>A?� 

− X���(ΛW) − X���(X) + X�! − ?�Γ�
��?c*     (29) 

Using item P3 of Property 1, we have X�(%* (&) −
2)(&, &* )X = 0 and substitute W* from Eq.(4) into 
Eq.(29), we obtain 

~*� = −W�Λ��(ΛW) − X���(X) + X�! 
−?��(Γ�

��Projgh (Γ�>AX) − >AX) (30) 
Using Eq.(15), we have ?��(Γ�

��Projgh (Γ�>AX) −
>1X≥ 0,then, Eq.(30) becomes 

~*� ≤ −W�Λ��(ΛW) − X���(X) + X�!.          (31) 
The last term in Eq.(31) satisfies the following 

inequality 
X�! ≤ (�max(Λ)13 + 45�)‖X‖� 

+�max(Λ)(�max(Λ)45‖W‖ 
+45‖X‖+�max(Λ)13 + 245�)‖W‖‖X‖,         (32) 

and the following inequalities hold true for all 
(W, X) ∈ Ω� 

        −�min(Λ)W��(ΛW) ≤ −4�‖W‖� 
−X���(X) ≤ −4�‖X‖�,        (33) 

where4�and 4� are in Eq.(18). From Eq.(32) and 
Eq.(33), we have 

~*� ≤ −°�‖X‖^2 − °�‖�‖
� + �max(Λ)(�max(Λ)45‖W‖ 

+45‖X + °²)‖W‖‖X‖       (34) 
with°� = 4� − �max(Λ)13 − 45�; °� = 4�;  °² =
�max(Λ)13 + 245�. Then, we rewrite 

~� ≤ − �³(W, X)                   (35) 
where  = �‖W‖, ‖X‖��and 

³(⋅) = ´&�� &��
&�� &��

µ                   (36) 

With&�� = °�;  &�� = °�;  &�� =  &�� =
−�max(Λ)(�max(Λ)45‖W‖ + 45‖X‖ + °²)/2. 
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Thus, ~*��⋅� is non-positive if the ³�W, X� is positive 
definitive. This can be satisfied if °� > 0, °� > 0 and °�°� > ¥max�¶�w�¥max�¶�N§‖�‖·N§‖¸‖·5¦�w

¹ .          (37) 
Condition °� > 0 is satisfied by defining 4� in 

Eq.(18). Condition °� > 0 is satisfied by Eq.(21). The 
remainder is condition Eq.(37) which can be written as ��max�Λ�45‖W‖ + 45‖X‖ + °²�� ≤ ¹5�5w�¥max�¶�w       (38) 

The upper bound of the left-hand side of Eq.(38) is ��max�Λ�45‖W‖ + 45‖X‖ + °²�� ≤  4�max �Λ��45�‖W‖�  + 445�‖X‖� + 2°²�     (39) 
here we use the inequality :�º + ��;� ≤ 2�º� + 2���. 
Denoting »��W, X� = 4�max�Λ��45�‖W‖� + 445�‖X‖�.       (40) 
Clearly, »�W, X� is a positive definitivefunction.Then, 
Eq.(39) becomes ��max�Λ�45‖W‖ + 45‖X‖ + °²�� ≤  »��W, X� + 2°²�.   

(41) 
From Eq.(38), Eq.(40) and Eq.(41), the condition 
Eq.(37) is rewritten as »��W, X� < ¹5�5w¥max�¶�w − 2°²� =  .              (42) 
where  is in Eq.(23). Let us define the set Ω² = |�W, X� ∈ Ω�|»��W, X� ≤  },           (43) 
then, condition Eq.(37) is ensured if �W�B�, X�B�� stays 
in Ω² for all the time. In order to achieve this purpose, 
we note that »��W, X� ≤ ~�:W, X, ?�; ≤ »²:W, X, ?�max;       (44) 

where »��W, X� = ‖M��¶��‖w
�¥max�¶�N¨ + Aª‖¸‖w

�              (45) 

»²:W, X, ?�max; = �max�Λ�4�2�min�Λ� ‖W‖� + 132 ‖X‖� 

+ ¥max�¼��vg�maxvw
�     (46) ?�max = ?̅ − ? > 0.                            (47) 

Furthermore, we have »��W, X� ≤ �»��W, X�.            (48) 
where� is in Eq.(24). Since, we have �W, X� ∈ Ω�, then 

‖W‖� ≤ ∑ ½�wM���¶�½��w���� |����Λ�W��|�.          (49) 
Let 4¤ = max���,⋯,� ½�wM���¶�½��wthen ‖W‖� ≤  4¤‖���ΛW�‖�                    (50) 
Using Eq.(50), we rewrite »��W, X� in Eq.(40) as 

»��W, X� ≤ 8�max�Λ�²45�4�4¤ ‖���ΛW�‖�
�max�Λ�4�  

+ ¤N§wAª ¿Aª� ‖X‖�À.                 (51) 
Let � as Eq.(24), then, we obtain Eq.(48). 

Thus, by constructing the set Ωg�,� with using 
Eq.(44) and Eq.(48), we have the following 
relationship »��W, X� ≤ � »��W, X� ≤ � »²:W, X, ?�max; ≤  .(52) 
Furthermore, the set Ωg�,� in (22) is a subset of Ω¹ = �W, X� ∈ Ω�|�»��W, X� ≤                 (53) 
since 

  �»²:W, X, ?�max; ≤   ⇒ �»��W, X� ≤  .          (54) 
Furthermore, Ω¹ is a subset ofΩ², since   �»��W, X� ≤   ⇒ »��W, X� ≤               (55) 
Thus, we have Ωg�,� ⊂ Ω¹ ⊂ Ω².                        (56) 

The nested sets in Eq.(56) show that for any :W, X, ?�; ∈ Ωg�,� × ℳ, condition Eq.(37) holds, 

implying that ~*�:W, X, ?�; ≤ 0, then the solution 
starting at :W�0�, X�0�; ∈ Ωg�,� stays in Ωg�,� for all ? ∈ ℳ and B ≥  0, and consequently in Ω¹ as well as 
in Ω². 

We proceed to show that the solution �W�B�, X�B�� 
converges asymptotically to the origin. Since, for any ?��0�and �W, X� ∈ Ωg�,�, the matrix ³ is positive 
definitive and ~*�:W, X, ?�; ≤ − �³ , ∀ �W, X� ∈ Ωg�,�             (57) 

From Eq.(57), this shows that �W, X� ∈ Ã� ∩ Ã and ?� ∈ Ã and we conclude from Eq.(13)that , ∈ Ã. 
This implies, using Eq.(1) and Property 1, that &' ∈Ã, and hence from Eq.(10) and Eq.(4), that �W*, X*� ∈Ã. Since, �W*, X*� ∈ Ã and �W, X� is uniformly 
continuous. Therefore, using Barbalat's Lemma [14] 
we conclude that �W, X� → 0 as B → ∞ and hence �W, W*� →  0as B → ∞. 

Remark 1The smooth projection operator Eq.(15) 
used in this paper ensures that the estimation 
parameter ?c always belongs to the domain ℳ even 
when the numerical error is appeared. Since the 
numerical error may drive ?c outside of the domain ℳ. In this case, the saturation projectionoperator in 
[11] is no longer defined. 

4. SIMULATION RESULTS 

 
Fig.1: The Planar Elbow Manipulator with two revolute 

joints. 

The simulation is taken from the example of a 
Planar Elbow Manipulator [2] with two revolute joints 
shown in Fig. 1. For the link �, � = 1,2, &_� denotes 
the joint angle; ¢� is the mass, ¬� is the length; ¬5� 
denotes the distance from the previous joint to the 
center of mass of link �; and Æ� denotes the moment of 
inertia about the axis coming out of the page, passing 
through the centre of mass of link �; The dynamic 
equations of the robot have the form Eq.(1) with & = �&�� , &���� and the matrices 
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%�&� = Ç1�� 1��1�� 1��È  , )�&, &* � = Ç ℎ&*� ℎ&*� + ℎ&*�−ℎ&*� 0 È 
where1�� = ¢�¬5�� + ¢��¬�� + ¬5�� + 2¬�¬5� cos &�� +Æ� + Æ�;  1�� = 1�� = ¢��¬5�� + ¬�¬5� cos &�� +Æ�;  1�� = ¢�¬5�� + Æ�;  ℎ = −¢�¬�¬5� sin &� and +�&�
= Ç�¢�¬5� + ¢�¬��� cos &� + ¢�¬5�� cos�&_1 + &_2�¢�¬5�� cos�&_1 + &_2� È 

The values of the parameters in the simulation are 
given as follows: 0.5kg≤ ¢� ≤3kg and 0.5kg≤ ¢� ≤2 kg, ¬�  =0.5m, ¬5� = 0.25m, ¬� = 0.5m and ¬5� =0.25m. Furthermore, we assume that the nominal 
values are ¢� = 2kg, ¢� = 1.5kg. The moments of 
inertia are calculated by formulas Æ� = ¢�¬��/12 and  Æ� = ¢�¬��/12. Then, we obtain 12 = 0.154, 13 =1.2444, 45 = 0.4333 and 46 = �19.62, 4.905��. 

If we group the parameters as: ?� = ¢�¬5��  +¢�:Ï�w·Ï§ww ; + Æ� + Æ�; ?� = ¢�¬�¬5�; ?² = ¢�¬5�� +Æ�; ?¹ = ¢�¬5� + ¢�¬�; ?� = ¢�¬5�. Then the 
uncertain parameter is ? = �?�, ?�, ?², ?¹, ?��� ∈ ℝ�. 
The smooth saturation function used in the simulation 
is ��4F� = �.tanh�4F� where �.is the bound of the 
function  σ�⋅�.The detail of the matrix >A�&, &*A , &'A� is 
given in the following: >A = ´ !�� !�� !�² !�¹ !��1!�� !�� !�² !�¹ !��µ         (58) 

where!�� = &'A�, !�� = °Ñ��&���2&'A� + &'A�� −���&2�&122+2&1&12�, !13=&12, !14=�°Ñ��&1� 
, !�� = � °Ñ��&� + &��, !�� = 0, !�� =°Ñ��&��&'A� + ����&��&*A�� , !�² = &'A� + &'A�, !�¹ = 0, !�� = � °Ñ��&� + &��. 
The initial conditions are & = �0,0��rad, &* =�0, 0��rad/s. The reference trajectory is given by 

&A��B� = 2Ò3 �1 − W��.�C�rad,  
&A��B� = Ó¹ �1 − W��.�C�rad                  (59) 

The input saturations in (2) are |,�| ≤ 30 Nm, |,�| ≤ 10 Nm            (60) 
Computation of the controller Eq.(13) and Eq.(14): 

The bounds of uncertain parameter are: ? = �0.2082, 0.0625, 0.0417 0.3750 0.1250�� , ?̅ = �1.2500, 0.3750, 0.2500, 2.2500, 0.7500��. 
The smooth convex function p�θc� in Eq. (15) is 

constructed as  

  p�?c� = �Ö Ç∑ �gh��×�Ø� �ℓ���� − 1 + ÚÈ             (61) 
where Û� = gP�·g�� , Ü� = gP��g�� , � = 1, ⋯ , 5, and 0 < Ú < 1 and ℓ ≥  2 are two real numbers. In the 

simulation, we set ε = 0.2, ℓ = 2. 
Following Eq. (20) and Eq. (21), we have � =2.2357, and select ��  = �4, 1�� , �� = �3, 3�� for Eq. 

(13), the matrices Λ = diag�0.15,0.15� for Eq. (4), �� = diag�0.1,0.1�, ?c�0� = �0.5, 0.15, 0.1, 0.5, 0.3�� 
for Eq. (14), � = �3,3�� and z = �2,2�� for Eq. (16). 
Then from Eq. (18) 4� = 0.3333, 4� = 1.5, 4� = 0.6, 
from Eq. (23)   = 11.4419 and from Eq. (24) 

� = 2.4227. Thus all the conditions Eq. (20) and Eq. 
(21) are satisfied. 

For the comparison, we carry out the simulation of 
the proposed controller Eq. (13) and Eq. (14), and the 
Model Reference Adaptive Control-like (MRAC-like) 
in [5], and the unbounded controller in [15]. In the 
results, the joint angles &� and &� are illustrated in Fig. 
2. The angular velocities of two link robot have been 
presented in Fig. 3. The controls u� and u� have been 
shown in Figs. 4. We are able to see that the proposed 
adaptive controller does not reach the input saturations 
while the other two controllers violated. The 
estimations of uncertain parameters of three methods 
were illustrated in Fig. 5. Thus, It was mentioned that 
the estimated parameters in three methods do not 
converge to its real values. In addition, the uncertain 
parameter ?cestimated by projection algorithm always 
belongs in region �?, ?̅�. 

 

 
Fig. 2: Joint angles &�and &�. 

 

 

Fig. 3: Angular velocities  &*�and &*�. 

5. CONCLUSIONS 

We have proposed the control schema for the 
uncertain robotic manipulator in the presence input 
saturations, that is the controller with predetermined 
bounds. Our controller is based on computation of the 



International Journal of Research in Advent Technology, Vol.4, No.4, April 2016 
E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

297 
 

control with predetermined bounds. The simulation 
showed that the control objective was completed. 

 

 
Fig. 4: Torques inputs ,�and ,�. 

 

 
Fig. 5: Estimated parameters. 
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